Objectives

1. To develop a fundamental knowledge of the physical principles that govern the transport of momentum, energy and mass, with emphasis on the mathematical formulation of the conservation principles.

2. To apply the knowledge obtained to the solution of chemical engineering problems involving transport phenomena.

Outline

Part I - Momentum Transport (Fluid Mechanics)

1. The momentum and mass conservation principles. Derivation of velocity distributions from mass and momentum balances.

Previous knowledge on basic concepts of fluid mechanics will be used to solve relatively simple steady-state, one-dimensional flow problems.


The conservation principles of mass and momentum will be used to develop general equations that can be used to predict motion and forces for Newtonian fluids.

3. Velocity distributions.

The Navier-Stokes equations will be used to solve momentum transport problems with applications to chemical engineering.

Part II - Energy Transport (Heat Transfer)

1. The principle of conservation of energy. The energy equation. Fourier's law. The thermal energy equation.

The general equations that represent the principle of conservation of energy will be developed.


The thermal energy equation will be used to solve problems dealing with static materials (heat conduction).


The thermal energy equation will be used to solve heat transfer problems in moving fluids (heat convection).
Part III - Mass Transport

The basic mechanisms for transport of a chemical species in a multicomponent mixture will be
explored and quantified.

2. The principle of conservation of mass applied to a chemical species in a mixture. The species
continuity equation. Fick's law. The convective-diffusion equation.
General equations will be developed for the modeling of mass transfer processes.

reactions.
The mass transfer equations will be applied to static materials (diffusion).

4. Concentration distributions in moving fluids.
The mass transfer equations will be applied to model problems in moving fluids (convection).

REFERENCES

1. Bird, R.B., W.E. Stewart, E.N. Lightfoot D.J. Klingenberg, Introduction to Transport Phenomena,
Wiley, 2015. An expanded version of this book is the classic work by Bird, Stewart and Lightfoot,


5. Welty, J.R., C.E. Wicks, R.E. Wilson and G. Rorrer, Fundamentals of Momentum, Heat and

COURSE EVALUATION

Homeworks
There will be homework assignments approximately every week. The final homework average
will correspond to 12% of the final grade. Homeworks may be submitted as hard copies or
electronically in the corresponding folder on D2L.

Tests
There will be four tests. Each test will correspond to 22% of the final grade. All tests will be
open book and notes.

Test 1 – TBD
Test 2 – TBD
Test 3 – TBD
Test 4 (final) – TBD