Printz Wins $700K Solar Energy Technologies Office Grant

Aug. 22, 2021
Image

CHEE assistant professor Adam Printz has received a three-year, $700,000 grant from the Department of Energy Solar Energy Technologies Office (SETO) to research lighter, more efficient solar power

Perovskite is a type of mineral, but the word can also refer to a range of lab-made materials that share the same unique crystalline structure and exhibit properties like photoconductivity and the ability to be made into inks. The latter property is what enables perovskites to be printed out onto flexible pieces of plastic – similar to the way newspapers are printed. This could make it possible to someday print out highly efficient and ultra-thin solar cells, or something like a television or an LED light that is thin enough to be rolled up.

“To me, the potential flexibility and light weight of perovskites offers key competitive advantages in applications such as wearables, avionics, and disaster relief power where size and portability are critical constraints,” Printz said. “Perhaps most exciting is that these benefits come without any significant tradeoff in device performance.”

Printz was selected as a part of the SETO Fiscal Year 2020 Perovskite Funding Program, which aims to rapidly increase affordable solar deployment, achieve the nation’s clean energy goals, and create high-paying U.S. jobs. His co-investigators are CHEE associate professor Erin Ratcliff and CHEE Professor Emeritus Neal Armstrong

Perovskite materials are made by spreading a thin layer of specialized ink over a surface, then heating the ink to cause the formation of the perovskite crystalline structure. This printed film consists of many tiny grains separated by boundary areas. Under a high-powered microscope, it looks like dry, cracked mud. It’s in these boundary areas – which are more chemically reactive than the grains themselves – where things can get tricky.

“These boundary areas can actually interact with moisture in the air and cause the perovskite to convert into a completely different material that does not absorb light – which makes for a terrible solar cell,” Printz said. “We want to minimize grain boundary surface area so that those reactions don’t happen, and the perovskite is more likely to stay perovskite.”

Printz's work was also highlighted by Arizona Public Media

Contact Us
Contact Us
Loading...
Contact Us
Contact Us
Loading...