Graduate Courses

Below on this page are CHEE graduate courses with syllabi and prerequisites. Many of the courses offered or required for the new Environmental Engineering ME are in other University of Arizona departments. For information on those non-CHEE courses, please see the individual department websites.

See the CHEE Graduate Handbook (PDF) for program details.

CHEE Grad Handbook (PDF)

Additional course information, including fees and grading bases, is available through the UA Catalog.

CHEE 512: Electrochemical Engineering
Units: 4

This course is suited to people with a physical sciences background who have not been trained as electrochemists, but who want to add electrochemical methods to their repertoire. There are many disciplines in which it would be advantageous to understand and use some electrochemical methods to complement the work that they are doing. The following topics will be covered: 1) Introduction and Overview of Electrode Processes 2 )Chemical vs. Electrochemical Thermodynamics and cell potentials, Nernst equation, electrode-solution interface, double-Layer structure, and adsorption and applications in analytical electrochemistry and sensors 3) Chemical Stoichiometry vs. Faraday's Law and coulometry, bulk electrolysis 4) Chemical vs. Electrochemical Kinetics and electrode reactions, rates, mechanisms and rate constants, mass transport, Butler-Volmer, Tafel, and Levich equations 5) Kinetic Methodology and potential step and sweep methods, polarography, controlled-current techniques, controlled mass transport approaches, rotating electrodes, microelectrodes, electrochemical impedance spectroscopy 6) Electrochemical Instrumentation and voltmeters, potentiostats, cells, counter and reference electrodes, etc. Also included, if time permits: 7) Coupled Characterization Methods and modified electrodes, spectroelectrochemistry, in-situ neutron scattering, surface analysis, etc. 8) Scanning Probe Techniques and scanning electrochemical microscopy, AFM, etc. Concurrent with CHEE 412.

Usually offered: Fall
 
CHEE 582: Analysis of Emerging Environmental Contaminants
Units: 3

Contaminants of emerging concern are major scientific and political issues. Many have been detected in air, water, soil and biota, and most are identified and quantified using nonstandardized methods, often with limited or questionable quality assurance and quality control. At times, public policy and resource allocation are based on these uncertain data. There are thousands of potential contaminants for which no analytical methodologies have been developed. Through this course, students become familiar with the diversity of analytical (instrumental) and bioanalytical (bioassay) tools currently available, and discover the pros and cons of each approach. The class also discusses future opportunities, such as development of online sensors and miniaturization of environmental methods. While the emphasis of the course is on water analysis, the class also briefly discusses implications for other environmental matrices, such as biosolids, sediments, solids, tissues, body fluids and aerosols. Contaminants are discussed in terms of classes (such as pharmaceuticals, steroid hormones, nanoparticles, metals, disinfection byproducts) and physical chemical properties (such as water solubility, pH, volatility, molecular weight and molecular geometry). This class provides a hands-on experience with key instrument platforms, such as gas chromatography with mass spectrometric detection, inductively coupled plasma with mass spectrometric detection, liquid chromatography with diode array UV, fluorescence and mass spectrometric detection. Cellular and whole animal bioassays for the screening of complex mixtures of contaminants are discussed and demonstrated. Key principles of toxicity identification and evaluation are covered, along with real-world examples of how to determine causes of observed environmental toxicity. Students work independently and in groups to investigate a key issue relative to environmental analysis, write a paper on this topic, and present and defend their findings before the class. Concurrent with CHEE 482.

Usually offered: Spring
CHEE 589: Trends in Nanomedicine Engineering - Fundamentals of Therapeutics and Drug Delivery Systems
Units: 3

Nanomedicine engineering research involves the advance of diagnostics for rapid screening and monitoring, controlled and localized drug delivery, targeted cancer therapies, enhanced cell material interactions, scaffolds for tissue engineering and gene delivery systems amongst others. Developments in nanomedicine engineering to effectively benefit patients require the interaction of diverse disciplines including chemistry, biochemistry, biophysics, engineering, materials science, cellular and molecular biology, pharmaceutical sciences and clinical translational medicine. This interdisciplinary course will address how materials are fabricated and characterized, and how they interact in biological systems. The emphasis of the course will be in the application of therapeutics and controlled release drug delivery systems. Integration of biomaterial nanostructures and release analysis will be highlighted throughout the course. Through lectures, paper reviews, class discussions, experimental lab exposure, class presentations and homework assignments, students will develop an in-depth understanding of the various ways nanoparticles have been used as diagnostics tools, in advancing tissue engineering and in how drug delivery systems can be improved to overcome the problems associated with typical oral and intravenous administration. Several types of drug and gene delivery methods, including oral, transdermal, implantable, targeted and pulmonary, will be discussed. The course will highlight the rational design of drug delivery devices based on the fundamental understanding in engineering, pharmacology, chemistry and biomaterials science. Concurrent with CHEE 489.

Usually offered: Spring
 

CONTACT
Graduate Program Coordinator: Lori Huggins, lhuggins@arizona.edu, 520.621.1897

Contact Us
Contact Us
Loading...
Contact Us
Contact Us
Loading...